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THE CONDITIONS FOR THE SOLUTIONS IN 

ELECTROMAGNETOELASTICITY TO BE EQUAL TO ZERO* 

S.D. KLYACHKO 

The quasistationary antiplane deformation of a cylinder and the twisting 
of a solid of rotation in conjunction with an electric or magnetic field 
for non-linear materials are considered. The conditions which guarantee 
that the stresses, displacements, induction and potential are zero for 
any boundary conditions are analysed. 

For the quasistationary antiplane deformation of a cylinder of circular cross-section 
made of a linear uniform transversely isotropic piezoelectric material with an unloaded 
contour, the specification on part of the contour of a constant electric potential, and on 
part of the contour of the conditions for matching in a vacuum, and also for certain other 
problems of the same type, it is well-known /I/ that the mechanical stresses are zero every- 
where, while the deformations and displacements are proportional to the strength and potential 
of the electric field. Below we analyse the presence of such properties in a certain class 
of problems and some allied problems. 

1. Pomitation of the probtem. Consider the quasistationary antiplane deformation of a 
cylinder (the derivatives with respect to time are zero), in conjunction with a plane electric 
field for a non-conducting neutral piezoelectric material. On the basis of a well-known 
analogy, all the results derived later also hold for the twisting of a solid of rotation in 
conjunction with an axisymmetrical electric field. For brevity we will only consider the 
antiplane deformation of a cylinder. The transverse cross-section of the cylinder is singly- 
connected or multiply-connected and is arbitrary. 

Suppose % % and .+ are orthonormalized coordinates, and the zg axis is parallel to 
the generatrix. Further i= 1,2; the notation is that generally used. Suppose the material 
is such that a state is possible for which only += u: ya =y,;o,,A o,;m: Ei; Di are non-zero 
(and are independent of a$, i.e., it is possible to consider the antiplane deformation of 
the cylinder in conjunction with a.plane electric field (/l-4/ etc.). 

We will write the equations of the problem as follows: 

(TV,; =: 0: y. s: I,,,; D,,, = 0: E, = rp,< (1.1) 

(v differs in sign from that usually employed). 
We will represent the contour r‘ in the formP= PO-t-P.= P,tP,. On P we specify mechanical 

and, simultaneously, electrical boundary conditions as follows: 

rO: o,n, = so: r,: u = s, (1.31 

I',,: D,n, = s,,: I-,: 'P = sm (1.3) 

The case when arbitrary additive constants appear in u and q is not specially stipulated, 
and these constants are fixed in a trivial way. 

In the antiplane deformation of a cylinder we will consider two classes of non-linear 
anisotropic non-uniform materials (bodies) - which we will call A and B. Suppose class A is 
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described by the equation.of 

and class B - similar to the 

state (already referred to the zl, 2% plane) 

Y = 1,(& 0) + aE, D = fn(t, E) f go (1.4) 

reduced equation of state 

E = fa (+.D) + BY. 0 = f, (5 v) + v Cf.51 

In (1.4) and (1.5) z = (4, rs), Y = &l,%). . .( f,= if,~,f,,}, .: a, $ are scalar constants which do 

not depend on x~,I,. We will understand henceforth by non-linearity, anisotropy and isotropy, . . non-uniformity etc., properties already referred to the %+ plane of the equation of state 
(for example, a material that is transversely isotropic to zs will henceforth be called 
isotropic). 

For brevity we will impose weak constraints on classes A and B. We will begin with 
class A. We will require that each material, and also materials "associated" with it, 
preserve the types of boundary conditions, traditional for appropriate linear isotropic 
uniform materials, i.e. type (1.2) and (1.3), type (1.2), and type (1.3). 

We mean by the preservation of type here, in particular, the existence and uniqueness of 
the solution (not necessarily in the initial class of functions), and the equality of all 
therequiredfunctions to zero if and only if all the quantities specified for this type Of 
boundary-value problem are zero. 

A similar constraint is imposed on class B. We can assume that A and B are fairly wide 
classes of non-linear anisotropic non-uniform materials (the set of "usual" linear isotropic 
uniform materials belong to the intersection of classes A and B). 

2. Simplification of the solution. For classes A and B, for certain combinations of 
Paths PO' I,,+ r,* Te it is possible to facilitate the process of solution which consists of 
replacing the initial connected problem by two unconnected ones. We will write this combi- 
nation for class A, introducing at the same time some notation, and doing the same for class 

B: 
rU z rp, Su’ = su - as 0’ SD* = SD - as, (2.f) 

u* = u - acp, y* = y - aE, D* = D - ao 

rq G rut s$$,* = s* - saw, sa* = se - @SD 

‘p* = ‘p - @, E’ = E - By, u* = CJ - @D W) 

We will consider how the simplifications affect situations (2.1) and (2.2). We will 
begin with class A. For a material of class A in situation (2.1), instead of solving the 
initial problem we can solve in parallel (independently) the truly elastic problem (for 
boundary conditions s,,*, s0 and the elastic "associated" material) and the purely electrical 

problem (s,,,, in*, the corresponding material), and then from (2.1) we can obtain the remaining 
components of the solution. We will write this assertion, and also the corresponding 
assertion for class B in situation (2.2) in the form of the following scheme (the sign =? 
denotes priority): 

Since linear uniform isotropic materials belong to the intersection of classes A and B, for 
these we have that (2.3) follows from (2.1), and (2.4) follows from (2.2), and when ru = rw 
both algorithms (2.3) and (2.4) are applicable. 

3. Equating the soZut%ons to ssro. A consequence of the above is a family of theorems 
on the equality of the solutions to zero for classes of materials A and B. 

We will begin with class A. For this class, in situation (2.1) two assertions hold. 
The first is as follows. If the functions sd, So*, specified on r are equal to zero, then 
everywhere in the region occupied by the body 

IT= o,y= aE,a= acp 

for any boundary conditions of the electric problem =e,c, which may be solvable for the 
electric "associated" material. We will write this assertion, the second assertion for class 
A, and two assertions for class B for situation (2.2) in the form of the following schemes: 

(Q 4 * = 0) -(Vso,s,: d = 0; y= a& U = acp) 13.11 
(so*. xv = 0) - (VS~,, sU: D = cm; E = 0; cp = 0) 

(so*, ou = 0) + (Vsn, .v,$ (r = fsD; y = 0; Y = 0) (3.2) 
(3 n, s@* = 0) -(Vs,, Q: D = 0; E = Py; ‘P = flu) 

For linear isotropic uniform materials when situations (2.1) and 12.2) are identical, 
both schemes (3.1) and (3.2) hold. 
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Assertions (3.1) and (3.2) are written for a general form of boundary conditions (1.2) 
and (1.3) of the mixed problem. In the case of so-called "fundamental boundary-value 
problems, the formulation of the theorems becomes more laconic. 

We note an obvious situation. The analogy between the problems of the antiplane 
deformation of a cylinder and the equations of state (1.4) and (1.5) (for 1, -f‘s, f, ++fo3 a - B) 
is a special case of a more general analogy between problems of the antiplane deformation of 
a cylinder and any equations of state F,(z, y, O, E,D) = 0 (p = i, ., 4) and F,, (I, E, D, y, u) = 0. 

4. AppZications. At the present time, as we know, piezoelectric properties of dif- 
ferent types of materials are used (single crystals, ceramics, polymers etc.). Some of these 
materials belong to class A. 

We will give an example. Suppose we have an infinite ceramic cylinder with a 
piecewise-uniform transverse cross-section, i.e. a body consisting of several infinite 
cylinders made of different ceramic materials and ideally connected to one another over the 
cylindrical surfaces. The transverse cross-section and its division into fragment-subregions 
are arbitrary. The characteristics of the ceramic depend, as we know, on the degree of 
preliminary polarization along the Q axis, and hence to make cylinder-composites the degree 
of polarization can be taken to be such that for all the materials the value of CL is the 
same. After connecting the cylinders we obtain a body of class A. 

As another example consider piezoelectric materials made of reinforced (composite) 
ceramic and polymers (there are many publications on this problem). By varying the 
parameters of these media in a standard way (the concentration, the direction and material of 
the fibres, the material of the matrix etc.), we can obtain anisotropic uniform bodies of 
class A. We will not consider the examples in more detail here, since the main purpose of the 
present communication is solely to state the fact that for any non-linearity, anisotropy and 
non-uniformity of the material or the cross-section (and also the form of the cross-section 
itself) (within the framework of class A) in the problem of antiplane deformation of a 
cylinder one obtains the Parton effect 111 (this relates to existing materials and materials 
which can be created). The equality of the mechanical stresses to zero in the construction 
is in a certain sense a rational characteristic, and hence the above description can be used 
in problems of optimization. Similar considerations relate to materials of class B. 

Notes.1. The conditions for splitting the problem and the equality of the solutions to 
zero given here are sufficient; their necessity has not been discussed. 

2. The discussion can be extended to the case of a magnetic field in a piezomagnetic 
material. 

3. As pointed out above, all the results for the antiplane deformation of a cylinder can 
be generalized to the case of the twisting of a solid of rotation in conjunction with an 
axisymmetrical electric (or magnetic) field. The solid of rotation can have arbitrary 
non-uniformity, anisotropy and non-linearity (in the framework of the equations of state, 
which are (1.4) and (1.5)) and a singly connected or multiply connected arbitrary meridian 
semicross-section. 

4. The transverse cross-section of the cylinder or the meridian semicross-section of 
the solid of rotation may contain curvilinear cuts (cracks), at the edges of which fractures 
u are specified (which generate Somigliani dislocations, and in a special case Volterra dis- 
locations) and discontinuities of the electric or magnetic potentials. 

5.Eqs.(1.4)-(3.2) can be generalized to plasticity, creep and corresponding electric (or 
magnetic) effects. For brevity we will only consider the class of viscoelectroelastic 
materials in the following. We replace in (1.4) and (1.5) the non-linear anisotropic func- 
tions by non-linear anisotropic operators fYi(.z, f,r,~(r)l:=!_,, . . . . and the constants a,(3 by 
linear operators 

_s, or(L~)E~(~)dr, . . . 

Suppose the equations of mechanostatics and electrostatics hold and the materials are so 
"good" that they do not violate the type of initial-boundary value problem which is inherent 
in the corresponding linear isotropic uniform materials. Using the notation 

yi* (L) = q(l)- 5 a(t,r)Ei(Z)dr. . . 

we can obtain, for situations analogous to (2.1) and (2.2), relations similar to (2.3), (2.4), 
(3.1) and (3.2). 
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AN EFFICIENT TECHNIQUE FOR SOLVING A CLASS OF 1NFlNITE SYSTEMS IN 

CONTACT PROBLEMS IN THE THEORY OF ELASTICITY* 

A.N. TSV~KOV and M.I. CH~AKOV 

In this paper we illustrate the efficiency of a method (see, e.g. /l, 2/) of solving 
infinite systems of linear algebraic equations of the first kind with singular coefficient 
matrices, to which many problems in the theory of elasticity and mathematical physics with 
mixed boundary conditions (see e.g. /3-9/l reduce. The method is based on a knowledge of the 
behaviour of the solution of the system for large numbers, which may be determined from an 
analysis of the behaviour of the initial problems at particular points. This enables us to 
reduce an infinite system to and efficiently-solvable finite system. The method does not 
require the factorization of functions, it enables us to find the principal component of the 
solution of infinite systems and also to find explicit particular solutions of the problem at 
points where the boundary conditions change. This method imposes practically no restrictions 
on the problem parameters and the computation of the solution does not require large amounts 
of computer time. 

1. Problems in the theory of elasticity with mixed boundary conditions may be reduced 
using the methods of operational calculus for semi-infinite and bounded regions (strips, 
layers, cylinders, wedges, cones, rectangles, circular plates, rings, etc.) to the solution 
of pairs (triples, etc.) of integral equations or series equations. 

In particular, we consider a triple series equation /3, 41 of the form 

(I.‘) 

Here Qk are the desired variables, J~(u~,I) and Uk are (respectively) a system of eigenfunc- 
tions and eigennumbers of a Sturm-Liouville problem for a second-order differential eguation 
in a finite interval (see 13-411, the nature of the function A(u) is also described in /3- 
41. 

In special cases of this problem, associated with a specific coordinate system, the 
functions y(Ur, 2) are trigonometric functions, Bessel functions, Legendre functions or other 
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